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1. Introduction

A natural way to predict the response of a non-linear stochastic system is to replace the system
with an equivalent system whose response is exactly predictable, and to take the exact response
probability density or statistics of the equivalent system as the approximate one of the original
system. This idea leads to several different types of statistically equivalent system methods,
depending upon types of equivalent systems and equivalence criteria. Among them, the most
simple and broadly applicable one is the statistical linearization or equivalent linearization, or
stochastic linearization. In this method, the equivalent system is linear with external Guassian
excitation and the equivalence criterion is usually the minimum mean square discrepancy between
the original and equivalent systems. This method was proposed in early 1950s and now is quite
mature. For the details, readers are referred to monograph [1] and review papers [2–4]. However,
the mostly used Gaussian linearization is not justified mathematically [5,6]. Furthermore, by using
this method, only the first and second moments of the response can be predicted, which define
uniquely a Gaussian distribution. So the statistical linearization is not applicable to the non-linear
stochastic systems with intrinsic non-linearity and (or) with parametric (multiplicative)
excitations.
To improve the statistical linearization, the so-called equivalent non-linear system method was

developed. In this method, the equivalent system is non-linear one subject to external (added) and
(or) parametric (multiplicative) excitations of Gaussian white noises and equivalent criterion have
several different options. In 1980s, several versions of this method were proposed [7–10] mainly
for single degree-of-freedom non-linear stochastic systems. Later, the method was extended to
multi-degree-of-freedom stochastically excited and dissipated Hamiltonian systems, including
non-integrable, intergrable, and partially integrable ones [11–13]. An important feature of this
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version of equivalent non-linear system method is that the stiffness and stochastic excitations are
kept the same for the original and equivalent systems and only damping terms are replaced. Thus,
part of the non-linear characteristics of the original system can be carried over to the equivalent
one and the method is applicable to the non-linear stochastic systems with intrinsic non-linearity
and (or) with parametric excitations. Furthermore, the stationary probability density rather than
a few moments can be predicted by using this method.
In the equivalent non-linear system method for stochastically excited and dissipated integrable

Hamiltonian systems proposed previously [12], to obtain the approximate stationary probability
density of the original system, nðn þ 1Þ=2 damping coefficients of the equivalent system are first
determined. In fact, however, it is not necessary. To obtain the approximate stationary solution,
only n derivatives of the probability potential with respect to first integrals of the associated
Hamiltonian system in non-resonant case are needed to be determined. Besides, the method was
developed only for non-resonant case.
In the present paper, the equivalent non-linear system method for MDOF stochastically excited

and dissipated integrable Hamiltonian systems in resonant case is developed. The approximate
probability density of a given non-linear stochastic system is obtained via finding n derivatives of
probability potential with respect to first integrals and a derivatives of probability potential with
respect to combinations of angle variables. The application and effectiveness of the new procedure
are illustrated with an example.

2. Exact stationary solution

The prerequisite for an equivalent non-linear system method for certain class of non-linear
stochastic systems is that there are sufficient exactly stationary solutions for that class of systems.
Before developing the equivalent system method, consider the exact stationary solutions of n d.o.f.
stochastically excited and dissipated integrable Hamiltonian systems. The equations of motion of
such a system are of the form:

’Qi ¼
@H 0

@Pi

;

’Pi ¼ �
@H 0

@Qi

� cij
@H 0

@Pj

þ fikxkðtÞ; i; j ¼ 1; 2;y; n; k ¼ 1; 2;y;m; ð1Þ

where Qi and Pi are generalized displacements and momenta, respectively; H 0 ¼ H 0ðQ;PÞ is twice
differentiable Hamiltonian; cij ¼ cijðQ;PÞ represent coefficients of quasi-linear dampings; fik ¼
fikðQ;PÞ are differentiable functions representing intensities of stochastic excitations; xkðtÞ are
Gaussian white noises in the sense of Stratonovich with correlation functions E½xkðtÞxlðt þ tÞ� ¼
2DkldðtÞ:
System (1) can be modelled as Stratonovich stochastic differential equations and then converted

into It #o stochastic differential equations by adding Wong–Zakai correction terms. Splitting
the Wong–Zakai correction terms into conservative and dissipative parts and combining them
with �@H 0=@Qi and �cij@H 0=@Pj; respectively, the following It #o stochastic differential equations
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are obtained:

dQi ¼
@H

@Pi

dt;

dPi ¼ �
@H

@Qi

þ mij
@H

@Pj

� �
dt þ sikBkðtÞ; i; j ¼ 1; 2;y; n; k ¼ 1; 2;y;m; ð2Þ

where H ¼ HðQ;PÞ and mij ¼ mijðQ;PÞ are, respectively, the Hamiltonian and damping
coefficients modified by the Wong–Zakai correction terms; sij ¼ sijðQ;PÞ with rrT ¼ 2fDfT;
BkðtÞ are standard Wiener processes.
It has been shown that the exact-stationary solution of Eq. (2) depends upon the integrability

and resonance of the associated Hamiltonian system with Hamiltonian H [14,15].
Suppose that the modified Hamiltonian system with Hamiltonian H is integrable with n first

integrals H1;H2;y;Hn (one of Hi can be replaced by H) and internally resonant with a resonant
relations

ku
i oi ¼ 0; u ¼ 1; 2;y; a; ð3Þ

where ku
i are small integers and oi ¼ oiðIÞ ¼ @H=@Ii are the n frequencies of the Hamiltonian

system. Action variables Ii are related to Hs by Ii ¼ fiðHÞ: Introduce angle variables yi ¼
oiðIÞt þ di and combinations of angle variables cu ¼ ku

i yi; u ¼ 1; 2;y; a: The exact stationary
solution in resonant case is of the form [14]

pðq; pÞ ¼ C exp½�lðH;wÞ�jH¼Hðq;pÞ;w¼wðq;pÞ; ð4Þ

where w ¼ ½c1c2yca�
T and probability potential l satisfy the following n first order linear partial

differential equations:

2mij
@H

@pj

þ
@bij

@pj

� bij
@Hs

@pj

@l
@Hs

þ
@cu

@pj

@l
@cu

� �
¼ 0;

i; j; s ¼ 1; 2;y; n; u ¼ 1; 2;y; a: ð5Þ

If the derivatives of probability potential with respect to first integrals, @l=@Hs; and with respect
to the combinations of angle variables, @l=@cu; can be obtained from Eq. (5) and they satisfy the
following compatibility conditions:

@2l
@Hs1@Hs2

¼
@2l

@Hs2@Hs1

;
@2l

@cu1
@cu2

¼
@2l

@cu2
@cu1

;
@2l

@Hs@cu

¼
@2l

@cu@Hs

; ð6Þ

then the solution to Eq. (5) is

l ¼
Z Hs @l

@Hs

dHs þ
Z cu @l

@cu

dcu: ð7Þ

The right-hand side of Eq. (7) is two line integrals with integrands summing over s ¼ 1; 2;y; n
and u ¼ 1; 2;y; a; respectively. The exact stationary probability density of the response of system
(1) is obtained by substituting Eq. (7) into Eq. (4).
It is noted that the key to find the exact stationary solution of system (1) is to find both @l=@Hs

and @l=@cu satisfying Eqs. (5) and (6). It will be shown in the following that these derivatives are
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also the key for finding the approximate stationary solution by using the equivalent non-linear
system method.
If the action-angle variables Is; ys for the modified Hamiltonian system with HamiltonianH can

be found, then Eqs. (4)–(7) still hold if Hs are replaced by Is:

3. Equivalent non-linear system method

Suppose that we are given an n d.o.f. stochastically excited and dissipated integrable
Hamiltonian system whose It #o equations are of the form

dQi ¼
@H

@Pi

dt;

dPi ¼ �
@H

@Qi

þ Mij
@H

@Pj

� �
dt þ sikBkðtÞ; i; j ¼ 1; 2;y; n; k ¼ 1; 2;y;m; ð8Þ

where all notations are the same as those in Eq. (2) except Mij ¼ MijðQ;PÞ; which are the
coefficients of quasi-linear dampings. Assume that the exact stationary solution to system (8) is
not obtainable. The objective of our study is to find the approximate stationary solution of system
(8) by using the equivalent non-linear system method. The equivalent system is of the form of
Eq. (2). Systems (8) and (2) have the same Hamiltonian and stochastic excitations and they differ
only in damping coefficients. It is seen from Eq. (5) that mij contribute the exact stationary
solution jointly rather than individually. Thus, as for finding the approximate stationary solution
of system (8), it is not necessary to determine all equivalent damping coefficients individually as
did in [12]. Instead, it is sufficient to find the equivalent @l=@Hs and @l=@cu:
The equivalent system has exact stationary solution of the form of Eq. (4) with l satisfying

Eqs. (5) and (6). Let

gs ¼ gsðq; pÞ ¼ @l=@Hs; hu ¼ huðq; pÞ ¼ @l=@cu;

s ¼ 1; 2;y; n; u ¼ 1; 2;y; a: ð9Þ

The difference between the given and equivalent systems is

ei ¼ ðMij � mijÞ
@H

@Pj

¼ Mij

@H

@Pj

þ
1

2

@bij

@Pj

� 1
2

bij

@Hs

@Pj

gs þ
@cu

@Pj

hu

� �
: ð10Þ

Once the equivalent gs and hu are found for givenMij based on some criterion and they satisfy the
compatibility conditions in Eq. (6), the approximate stationary solution of given system (8) is of
the form of Eq. (4) with l defined by Eq. (7). The following three equivalence criteria are used in
the following.
The first criterion for obtaining gs and hu is minimizing the mean square deficiency in damping

forces with respect to gs and hu; i.e.,

min
gs;hu

E½eiei�: ð11Þ

The necessary conditions for Eq. (11) are

dE½eiei�=dgs ¼ 0; s ¼ 1; 2;y; n; ð12aÞ
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dE½eiei�=dhu ¼ 0; u ¼ 1; 2;y; a; ð12bÞ

or Z
N

�N

eiðdei=dgsÞpðq; pÞ dq dp ¼ 0; s ¼ 1; 2;y; n; ð13aÞ

Z
N

�N

eiðdei=dhuÞpðq; pÞ dq dp ¼ 0; u ¼ 1; 2;y; a: ð13bÞ

Introducing transformation from q; p to H;w; h1 ¼ ½y1y2?yn�a�T; Eqs. (13a) and (13b) can be
rewritten as Z 2p

0

Z
N

0

pðH;wÞ
Z 2p

0

ei
dei

dgs

�
@ðH;w; h1Þ
@ðq; pÞ

����
����

� �
dh1 dH dw ¼ 0;

s ¼ 1; 2;y; n; ð14aÞ

Z 2p

0

Z
N

0

pðH;wÞ
Z 2p

0

ei
dei

dhu

�
@ðH;w; h1Þ
@ðq; pÞ

����
����

� �
dh1 dH dw ¼ 0;

u ¼ 1; 2;y; a; ð14bÞ

where j@ðH;w; h1Þ=@ðq; pÞj is the absolute value of the Jacobian determinant for the transforma-
tion. Since pðH;wÞ is unknown, to proceed further, Eqs. (14a) and (14b) are replaced by the
following more restrictive sufficient conditions:Z 2p

0

ei
dei

dgs

� ��
@ðH;w; h1Þ
@ðq; pÞ

����
����

� �
dh1 ¼ 0; s ¼ 1; 2;y; n; ð15aÞ

Z 2p

0

ei
dei

dhu

� ��
@ðH;w; h1Þ
@ðq; pÞ

����
����

� �
dh1 ¼ 0; u ¼ 1; 2;y; a: ð15bÞ

Inserting Eq. (10) into Eqs. (15a) and (15b) leads toZ 2p

0

Mij
@H

@pj

þ
1

2

@bij

@pj

�
1

2
bij

@Hs

@pj

gs þ
@cu

@pj

hu

� �� �
bij

@Hs

@pj

�
@ðH;w; h1Þ
@ðq; pÞ

����
����

� 	
dh1 ¼ 0;

s ¼ 1; 2;y; n; ð16aÞ

Z 2p

0

Mij

@H

@pj

þ
1

2

@bij

@pj

�
1

2
bij

@Hs

@pj

gs þ
@cu

@pj

hu

� �� �
bij

@cu

@pj

�
@ðH;w; h1Þ
@ðq; pÞ

����
����

� 	
dh1 ¼ 0;

u ¼ 1; 2;y; a: ð16bÞ

The second criterion for obtaining gs and hu is minimizing the mean square deficiency in the two
energies dissipated by the damping forces in the original and equivalent systems with respect to gs

and hu; i.e.,

min
gs;hu

E ei
@H

@pj

� �2" #
: ð17Þ
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Then, similar derivation as that from Eqs. (13a) to (16b) yieldsZ 2p

0

@H

@pi

Mij

@H

@pj

þ
1

2

@bij

@pj

� 1
2

bij

@Hs

@pj

gs þ
@cu

@pj

hu

� �� ��



@H

@pi

bij
@Hs

@pj

� ��
@ðH;w; h1Þ
@ðq; pÞ

����
����
	
dh1 ¼ 0; s ¼ 1; 2;y; n; ð18aÞ

Z 2p

0

@H

@pi

Mij
@H

@pj

þ
1

2

@bij

@pj

� 1
2

bij
@Hs

@pj

gs þ
@cu

@pj

hu

� �� ��



@H

@pi

bij

@cu

@pj

� ��
@ðH;w; h1Þ
@ðq; pÞ

����
����
	
dh1 ¼ 0; u ¼ 1; 2;y; a: ð18bÞ

The third criterion for obtaining gs and hu is equality of the expected time rates ofHs (or Is) and
cu associated with the given and equivalent systems, i.e.,

E
dHs

dt

� �
giv

¼ E
dHs

dt

� �
equ

; s ¼ 1; 2;y; n; ð19aÞ

E
dcu

dt

� �
giv

¼ E
dcu

dt

� �
equ

; u ¼ 1; 2;y; a: ð19bÞ

The It #o equations for dHs=dt; and dcu=dt can be derived from Eqs. (8) and (2) by using It #o
differential rule. Then, following the derivation from Eqs. (13a)–(16b), the following equations for
determining gs and hu can be obtained:Z 2p

0

@Hs

@pi

Mij
@H

@pj

þ
1

2

@bij

@pj

� 1
2

bij
@Hs

@pj

gs þ
@cu

@pj

hu

� �� ��
@ðH;w; h1Þ
@ðq; pÞ

����
����

� 	
dh1 ¼ 0;

s ¼ 1; 2;y; n; ð20aÞ

Z 2p

0

@cu

@pi

Mij
@H

@pj

þ
1

2

@bij

@pj

� 1
2

bij
@Hs

@pj

gs þ
@cu

@pj

hu

� �� ��
@ðH;w; h1Þ
@ðq; pÞ

����
����

� 	
dh1 ¼ 0;

u ¼ 1; 2;y; a: ð20bÞ

Eqs. (16a) and (16b), (18a) and (18b), (20a) and (20b), after completing the integration, are a set
of n þ a linear algebric equations for gs and hu: If gs and hu can be obtained from solving one set of
these equations and they satisfy the compatibility conditions in Eq. (6), then the approximate
stationary probability density of given system (8) is obtained by substituting gs and hu into Eq. (7)
then into Eq. (4).
If the action-angle vector I, h can be found for the Hamiltonian systems, then formulas similar

to Eqs. (16a) and (16b), (18a) and (18b), (20a) and (20b) can be derived for determining the
probability potential. In this case the Jacobian determinant j@ðI;w; h1Þ=@ðq; pÞj can be omitted
since it is a linear combination of Jacobian determinant j@ðI; hÞ=@ðq; pÞj of a canonical
transformation with integers as coefficients and thus an integer.
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4. Example

Consider two non-linear damping oscillators coupled with linear dampings and subject to
Guassian white noise excitations. The equations of motion of the system are of the form

’Q1 ¼ P1;

’P1 ¼ �o21Q1 � ða11 þ a12P21ÞP1 � b1P2 þ x1ðtÞ;
’Q2 ¼ P2;

’P2 ¼ �o22Q2 � ða21 þ a22P22ÞP2 � b2P1 þ x2ðtÞ; ð21Þ

where oi; bi; aij are constants, xkðtÞ are independent Gaussian white noises with intensities 2Dk:
There is no Wong–Zakai correction terms for this system. The Hamiltonian associated with this
system is

H ¼ H1 þ H2; Hi ¼ ðp2i þ o2i q2i Þ=2: ð22Þ

System (21) can be modelled as It #o equations of the form of Eq. (8) with

M11 ¼ a11 þ a12P21; M12 ¼ b1; M21 ¼ b2; M22 ¼ a21 þ a22P22;

b11 ¼ 2D1; b22 ¼ 2D2; b12 ¼ b21 ¼ 0: ð23Þ

Suppose that o1 ¼ o2: Then, the Hamiltonian system associated with system (21) is in primary
internal resonance. Introduce angle variables

yi ¼ tg�1ðpi=oiqiÞ; i ¼ 1; 2 ð24Þ

and the combination of angle variable

c ¼ y1 � y2: ð25Þ

The inverse of Eqs. (24) and (25) is

q1 ¼

ffiffiffiffiffiffiffiffiffi
2H1

p
o1

cosðy2 þ cÞ; p1 ¼
ffiffiffiffiffiffiffiffiffi
2H1

p
sinðy2 þ cÞ;

q2 ¼

ffiffiffiffiffiffiffiffiffi
2H2

p
o2

cos y2; p2 ¼
ffiffiffiffiffiffiffiffiffi
2H2

p
sin y2: ð26Þ

Thus

@c
@p1

¼
@y1
@p1

¼
o1q1
2H1

;

@c
@p2

¼
�@y2
@p2

¼
�o2q2
2H2

: ð27Þ

The approximate stationary solution of system (21) is of the form of Eqs. (4) and (7), i.e.,

pðq; pÞ ¼ C exp �
Z H1 @l

@H1
dH1 �

Z H2 @l
@H2

dH2 �
Z c @l

@c
dc

� �
; ð28Þ

where Hi;c are functions of q; p:
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Based on the first criterion, i.e., Eqs. (16a) and (16b), gs ¼ @l=@Hs; s ¼ 1; 2; and h ¼ @l=@c
satisfy the following equations:Z 2p

0

M11p1 þ M12p2 � 1
2o1

b11p1g1 � 1
2

b11
@c
@p1

h

� �
b11

p1

o1

� �� �
dy2 ¼ 0;Z 2p

0

M21p1 þ M22p2 � 1
2o2

b22p2g2 � 1
2

b22
@c
@p2

h

� �
b22

p2

o2

� �� �
dy2 ¼ 0;Z 2p

0

M11p1 þ M12p2 � 1
2o1

b11p1g1 � 1
2

b11
@c
@p1

h

� �
b11

@c
@p1

� ��

þ M21p1 þ M22p2 � 1
2o2

b22p2g2 � 1
2

b22
@c
@p2

h

� �
b22

@c
@p2

� ��
dy2 ¼ 0: ð29Þ

Inserting Eqs. (26) and (27) into Eq. (29) and completing the integration lead to

g1 ¼
a11
D1

þ
3

2

a12
D1

H1 þ
b1
D1

ffiffiffiffiffiffi
H2

H1

r
cosc;

g2 ¼
a21
D2

þ
3

2

a22
D2

H2 þ
b2
D2

ffiffiffiffiffiffi
H1

H2

r
cosc;

h ¼
�2ðb1D1H2 þ b2D2H1Þ

D22H1 þ D21H2

ffiffiffiffiffiffiffiffiffiffiffiffi
H1H2

p
sinc: ð30Þ

The compatibility conditions in Eq. (6) require

b1=D1 ¼ b2=D2: ð31Þ

Substituting Eqs. (30) and (31) into Eq. (28) yields

pðq; pÞ ¼C exp �
a11
D1

H1 þ
a21
D2

H2 þ
3

4

a12
D1

H2
1 þ

3

4

a22
D2

H2
2

��

þ
6b2
D2

ffiffiffiffiffiffiffiffiffiffiffiffi
H1H2

p
cosc

������
Hi¼ðp2

i
þo2

i
q2

i
Þ=2;c¼tg�1ðp1=o1q1Þ�tg�1ðp2=o2q2Þ

: ð32Þ

Based on the second criterion, i.e., Eqs. (18a) and (18b), gs ¼ @l=@Hs; s ¼ 1; 2; and h ¼ @l=@c
satisfy the following equations:Z 2p

0

p1 M11p1 þ M12p2 � 1
2o1

b11p1g1 � 1
2

b11
@c
@p1

h

� �
b11

p21
o1

� �� �
dy2 ¼ 0;Z 2p

0

p2 M21p1 þ M22p2 � 1
2o2

b22p2g2 � 1
2

b22
@c
@p2

h

� �
b22

p22
o2

� �� �
dy2 ¼ 0;Z 2p

0

p1 M11p1 þ M12p2 � 1
2o1

b11p1g1 � 1
2

b11
@c
@p1

h

� �
b11p1

@c
@p1

� ��

þp2 M21p1 þ M22p2 � 1
2o2

b22p2g2 � 1
2

b22
@c
@p2

h

� �
b22p2

@c
@p2

� ��
dy2 ¼ 0: ð33Þ
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Inserting Eqs. (26) and (27) into Eq. (33) and completing the integration yield

g1 ¼
a11
D1

þ
5

3

a12
D1

H1 þ
b1
D1

ffiffiffiffiffiffi
H2

H1

r
cosc;

g2 ¼
a21
D2

þ
5

3

a22
D2

H2 þ
b2
D2

ffiffiffiffiffiffi
H1

H2

r
cosc;

h ¼
�2ðb1D1 þ b2D2Þ

D22 þ D21

ffiffiffiffiffiffiffiffiffiffiffiffi
H1H2

p
sin c: ð34Þ

The compatibility conditions in Eq. (6) require that Eq. (31) be satisfied. The approximate
stationary probability density of system (21) is obtained by inserting Eqs. (34) and (31) into
Eq. (28) and completing the integration. The result is

pðq; pÞ ¼C exp �
a11
D1

H1 þ
a21
D2

H2 þ
5

6

a12
D1

H2
1 þ

5

6

a22
D2

H2
2

��

þ
6b2
D2

ffiffiffiffiffiffiffiffiffiffiffiffi
H1H2

p
cosc

������
Hi¼ðp2

i
þo2

i
q2

i
Þ=2;c¼tg�1ðp1=o1q1Þ�tg�1ðp2=o2q2Þ

: ð35Þ

According to the third criterion, i.e., Eqs. (20a) and (20b), g0s ¼ @l=@Hs; s ¼ 1; 2; and h ¼ @l=@c
satisfy the following equations:

Z 2p

0

p1

o1
M11p1 þ M12p2 � 1

2o1
b11p1g1 � 1

2
b11

@c
@p1

h

� �� �
dy2 ¼ 0;Z 2p

0

p2

o2
M21p1 þ M22p2 � 1

2o2
b22p2g2 � 1

2
b22

@c
@p2

h

� �� �
dy2 ¼ 0;Z 2p

0

@c
@p1

M11p1 þ M12p2 � 1
2o1

b11p1g1 � 1
2

b11
@c
@p1

h

� ��

þ
@c
@p2

M21p1 þ M22p2 � 1
2o2

b22p2g2 � 1
2

b22
@c
@p2

h

� ��
dy2 ¼ 0: ð36Þ

Inserting Eqs. (26) and (27) into Eq. (36) and completing the integration yield

g1 ¼
a11
D1

þ
3

2

a12
D1

H1 þ
b1
D1

ffiffiffiffiffiffi
H2

H1

r
cosc;

g2 ¼
a21
D2

þ
3

2

a22
D2

H2 þ
b2
D2

ffiffiffiffiffiffi
H1

H2

r
cosc;

h ¼
�2ðb1H2 þ b2H1Þ

D2H1 þ D1H2

ffiffiffiffiffiffiffiffiffiffiffiffi
H1H2

p
sin c: ð37Þ
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The compatibility conditions in Eq. (6) require that Eq. (31) be satisfied. Instituting Eqs. (37) and
(31) into Eq. (28) leads to the approximate stationary probability density of system (21)

pðq; pÞ ¼C exp �
a11
D1

H1 þ
a21
D2

H2 þ
3

4

a12
D1

H2
1 þ

3

4

a22
D2

H2
2

��

þ
6b2
D2

ffiffiffiffiffiffiffiffiffiffiffiffi
H1H2

p
cosc

������
Hi¼ðp2

i
þo2

i
q2

i
Þ=2;c¼tg�1ðp1=o1q1Þ�tg�1ðp2=o2q2Þ

: ð38Þ

Note that, Since bii are constants, the first two equations in Eq. (36) are identical to those in
Eq. (29). The third equation in Eq. (36) is identical to that in Eq. (29) if b11 ¼ b22: So if b11 ¼ b22
are constants, then the first and third criteria yield the same gs and h: Although h in Eq. (30) is
different from that in Eq. (37),

R c
h dc is the same for the two criteria. So, the approximate
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Fig. 1. Stationary marginal probability density pðq1; q2Þ of system (21) in resonant case. o1 ¼ o2 ¼ 1; a11 ¼ �0:08;
a12 ¼ 0:08; a21 ¼ �0:1; a22 ¼ 0:1; b1 ¼ 0:008; b2 ¼ 0:01; D1 ¼ 0:008; D2 ¼ 0:01: (a) from Eq. (32); (b) from digital

simulation.
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Fig. 2. Stationary marginal probability density pðq1Þ of system (21) in resonant case. The parameters are the same as
those in Fig. 1, except D1 and D2 are variable. — analytical result; � ~; from digital simulation.
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Fig. 3. Stationary marginal probability density pðq2Þ of system (21) in resonant case. The parameters and symbols are
the same as those in Fig. 2.
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Fig. 4. Stationary mean-square value E½Q21� of system (21) in resonant case as function of excitation intensity D1 ¼ D0
and D2 ¼ 1:25D0: The other parameters and symbols are the same as those in Fig. 2.
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stationary probability densities of system (21) obtained from the first and third criteria are the
same. The same circumstance occurs in the associated non-resonant case. This happens due to
the special excitation. In the case of multiple excitations or parametric excitation in damping
term, the first and third criteria will yield different results.
Some numerical results obtained by using the proposed method and from the digital simulation

of original system are shown in Figs. 1–5. The stationary marginal probability density pðq1; q2Þ of
system (21) obtained from Eq. (32) is shown in Fig. 1(a). The corresponding result from digital
simulation is shown in Fig. 1(b). The stationary marginal probability densities pðq1Þ and pðq2Þ of
system (21) with two sets of different excitation intensities are shown in Figs. 2 and 3, respectively.
The stationary mean square values E½Q21� and E½Q22� of system (21) as functions of excitation
intensity are shown in Figs. 4 and 5, respectively. It is seen from these figures that the analytical
results and corresponding results from digital simulation are in excellent agreement.

5. Concluding remarks

The equivalent non-linear system method for stochastically excited and dissipated integrable
Hamiltonian systems in resonant case has been developed. Instead of finding the damping
coefficients of equivalent system, the derivatives of probability potential with respect to first
integrals and combinations of angle variables are determined for obtaining the approximate
stationary solution of a given system. The new technique is much more simper than that in
Ref. [12], especially for higher d.o.f. systems. Thus, this version of the equivalent non-linear
system method is more widely applicable. The comparison between the two results obtained by
using this method and from digital simulation for an example shows that this method may yield
quite accurate result. The results obtained by using this method for the example also show that
different criteria may lead to the same result in some special cases and that linear damping
coupling plays its roll only in resonant case.
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Fig. 5. Stationary mean square value E½Q22� of system (21) in resonant case as function of excitation intensity D1 ¼ D0
and D2 ¼ 1:25D0: The other parameters and symbols are the same as those in Fig. 2.
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